K-set contractions and nonlinear vector boundary value problems
نویسندگان
چکیده
منابع مشابه
Nonlinear Elliptic Boundary Value Problems
It is the object of the present note to present a new nonlinear version of the orthogonal projection method for proving the existence of solutions of nonlinear elliptic boundary value problems. The key point in this method is the application of a new general theorem concerning the solvability of nonlinear functional equations in a reflexive Banach space involving operators which may not be cont...
متن کاملNonlinear Multivalued Boundary Value Problems ∗
In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when domA 6= R and domA = R , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come f...
متن کاملProblems with nonlinear boundary value conditions
The existence and multiplicity results are shown for certain types of problems with nonlinear boundary value conditions.
متن کاملSolutions of Nonlinear Singular Boundary Value Problems
We study the existence of solutions to a class of problems u + f(t, u) = 0, u(0) = u(1) = 0, where f(t, ·) is allowed to be singular at t = 0, t = 1.
متن کاملNonlinear second-order multivalued boundary value problems
In this paper we study nonlinear second-order differential inclusions involving the ordinary vector p-Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1986
ISSN: 0022-247X
DOI: 10.1016/0022-247x(86)90244-1